Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Insect Biochem Mol Biol ; 152: 103890, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36496139

RESUMEN

The Neotropical brown stink bug, Euschistus heros, is a major pest of soybean in South America. The importance of E. heros as a pest has grown significantly in recent times due to increases in its abundance and range, and the evolution of insecticide resistance. Recent work has begun to examine the genetic diversity, population structure, and genetic mechanisms of insecticide resistance in E. heros. However, to date, investigation of these topics has been hampered by a lack of genomic resources for this species. Here we address this need by assembling a high-quality draft genome for E. heros. We used a combination of short and long read sequencing to assemble an E. heros genome of 1.4 Gb comprising 906 contigs with a contig N50 of 3.5 MB. We leveraged this new genomic resource, in combination with genotyping by sequencing, to explore genetic diversity in populations of this species in Brazil and identify genetic loci in the genome which are under selection. Our genome-wide analyses, confirm that there are two populations of E. heros co-occurring in different geographical regions in Brazil, and that, in certain regions of the country these populations are hybridizing. We identify several regions of the genome as under selection, including markers associated with putative insecticide resistance genes. Taken together, the new genomic resources generated in this study will accelerate research into fundamental aspects of stinkbug biology and applied aspects relating to the sustainable control of a highly damaging crop pest.


Asunto(s)
Heterópteros , Insecticidas , Animales , Estudio de Asociación del Genoma Completo , Heterópteros/genética , Brasil , Demografía
2.
Pest Manag Sci ; 76(10): 3451-3458, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32583901

RESUMEN

BACKGROUND: Insect Capability neuropeptides (CAP2b/CAPA-PKs) play a critical role in modulating different physiologies and behavior in insects. In a previous proof-of-concept study, the CAP2b analogues 1895 (2Abf-Suc-FGPRLamide) and 2129 (2Abf-Suc-ATPRIamide) were reported to reduce aphid fitness when administered by injection. In the current study, the insecticidal efficacy of 1895 and 2129 on the peach potato aphid Myzus persicae was analyzed by topical application, simulating a spray application scenario in the field. Additionally, the selectivity of the tested analogues was evaluated against a selection of beneficial insects, namely three natural enemies (Adalia bipunctata, Chrysoperla carnea and Nasonia vitripennis) and a pollinator (Bombus terrestris). RESULTS: Within 3-5 days post topical exposure of aphids to 1895, higher mortality (33%) was observed, as was the case for the treatment with 2129 (17%) and the mixture of 1895 + 2129 (47%) compared to the control (3%). 1895 and the mix 1895 + 2129 showed the strongest and comparable insecticidal effects. Additionally, surviving aphids treated with 1895 showed a reduction in total lifetime reproduction (GRR) of 30%, 19% with 2129 and 39% with the mix 1895 + 2129. Of interest from a biosafety perspective is that by using the same delivery method and dose, no significant effects on survival, weight increase and food intake was observed for the representative natural enemies and the pollinator. CONCLUSION: This study highlights the potential of exploiting CAP2b analogues such as 1895 (core structure FGPRL) as aphicides. Additionally, the CAP2b analogues used in this study were selective as they showed no effects when applied on four representative beneficial insects.


Asunto(s)
Áfidos , Animales , Insectos , Insecticidas , Péptidos
3.
Insect Biochem Mol Biol ; 114: 103227, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31470084

RESUMEN

Insects employ neuropeptides to regulate their growth & development, behaviour, metabolism and their internal milieu. At least 50 neuropeptides are known to date, with some ancestral to the insects and others more specific to particular taxa. In order to understand the evolution and essentiality of neuropeptides, we data mined publicly available high quality genomic or transcriptomic data for 31 species of the largest insect Order, the Coleoptera, chosen to represent the superfamilies' of the Adephaga and Polyphaga. The resulting neuropeptide distributions were compared against the habitats, lifestyle and other parameters. Around half of the neuropeptide families were represented across the Coleoptera, suggesting essentiality or at least continuing utility. However, the remaining families showed patterns of loss that did not correlate with any obvious life history parameter, suggesting that these neuropeptides are no longer required for the Coleopteran lifestyle. This may perhaps indicate a decreasing reliance on neuropeptide signaling in insects.


Asunto(s)
Evolución Biológica , Escarabajos/metabolismo , Neuropéptidos/metabolismo , Secuencia de Aminoácidos , Animales , Conducta Alimentaria , Genoma de los Insectos , Muda , Reproducción , Transcriptoma , Equilibrio Hidroelectrolítico
4.
Insect Biochem Mol Biol ; 101: 94-107, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30165105

RESUMEN

Hylobius abietis (Linnaeus), or large pine weevil (Coleoptera, Curculionidae), is a pest of European coniferous forests. In order to gain understanding of the functional physiology of this species, we have assembled a de novo transcriptome of H. abietis, from sequence data obtained by Next Generation Sequencing. In particular, we have identified genes encoding neuropeptides, peptide hormones and their putative G-protein coupled receptors (GPCRs) to gain insights into neuropeptide-modulated processes. The transcriptome was assembled de novo from pooled paired-end, sequence reads obtained from RNA from whole adults, gut and central nervous system tissue samples. Data analysis was performed on the transcripts obtained from the assembly including, annotation, gene ontology and functional assignment as well as transcriptome completeness assessment and KEGG pathway analysis. Pipelines were created using Bioinformatics tools and techniques for prediction and identification of neuropeptides and neuropeptide receptors. Peptidomic analysis was also carried out using a combination of MALDI-TOF as well as Q-Exactive Orbitrap mass spectrometry to confirm the identified neuropeptide. 41 putative neuropeptide families were identified in H. abietis, including Adipokinetic hormone (AKH), CAPA and DH31. Neuropeptide F, which has not been yet identified in the model beetle T. castaneum, was identified. Additionally, 24 putative neuropeptide and 9 leucine-rich repeat containing G protein coupled receptor-encoding transcripts were determined using both alignment as well as non-alignment methods. This information, submitted to the NCBI sequence read archive repository (SRA accession: SRP133355), can now be used to inform understanding of neuropeptide-modulated physiology and behaviour in H. abietis; and to develop specific neuropeptide-based tools for H. abietis control.


Asunto(s)
Proteínas de Insectos/genética , Neuropéptidos/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropéptido/genética , Transcriptoma , Gorgojos/genética , Secuencia de Aminoácidos , Animales , Sistema Nervioso Central/metabolismo , Biología Computacional , Femenino , Agricultura Forestal , Tracto Gastrointestinal/metabolismo , Regulación de la Expresión Génica , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Hormonas de Insectos/genética , Hormonas de Insectos/metabolismo , Proteínas de Insectos/clasificación , Proteínas de Insectos/metabolismo , Masculino , Redes y Vías Metabólicas/genética , Anotación de Secuencia Molecular , Neuropéptidos/clasificación , Neuropéptidos/metabolismo , Oligopéptidos/genética , Oligopéptidos/metabolismo , Filogenia , Pinus/parasitología , Ácido Pirrolidona Carboxílico/análogos & derivados , Ácido Pirrolidona Carboxílico/metabolismo , Receptores Acoplados a Proteínas G/clasificación , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropéptido/clasificación , Receptores de Neuropéptido/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Gorgojos/clasificación , Gorgojos/metabolismo
5.
Insect Biochem Mol Biol ; 86: 9-19, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28502574

RESUMEN

Neuropeptides are responsible for regulating a variety of functions, including development, metabolism, water and ion homeostasis, and as neuromodulators in circuits of the central nervous system. Numerous neuropeptides have been identified and characterized. However, both discovery and functional characterization of neuropeptides across the massive Class Insecta has been sporadic. To leverage advances in post-genomic technologies for this rapidly growing field, insect neuroendocrinology requires a consolidated, comprehensive and standardised resource for managing neuropeptide information. The Database for Insect Neuropeptide Research (DINeR) is a web-based database-application used for search and retrieval of neuropeptide information of various insect species detailing their isoform sequences, physiological functionality and images of their receptor-binding sites, in an intuitive, accessible and user-friendly format. The curated data includes representatives of 50 well described neuropeptide families from over 400 different insect species. Approximately 4700 FASTA formatted, neuropeptide isoform amino acid sequences and over 200 records of physiological functionality have been recorded based on published literature. Also available are images of neuropeptide receptor locations. In addition, the data include comprehensive summaries for each neuropeptide family, including their function, location, known functionality, as well as cladograms, sequence alignments and logos covering most insect orders. Moreover, we have adopted a standardised nomenclature to address inconsistent classification of neuropeptides. As part of the H2020 nEUROSTRESSPEP project, the data will be actively maintained and curated, ensuring a comprehensive and standardised resource for the scientific community. DINeR is publicly available at the project website: http://www.neurostresspep.eu/diner/.


Asunto(s)
Bases de Datos Factuales , Insectos/metabolismo , Neuropéptidos , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...